Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 485: 116908, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513841

RESUMO

Nitrogen mustard (NM) is a toxic vesicant that causes acute injury to the respiratory tract. This is accompanied by an accumulation of activated macrophages in the lung and oxidative stress which have been implicated in tissue injury. In these studies, we analyzed the effects of N-acetylcysteine (NAC), an inhibitor of oxidative stress and inflammation on NM-induced lung injury, macrophage activation and bioenergetics. Treatment of rats with NAC (150 mg/kg, i.p., daily) beginning 30 min after administration of NM (0.125 mg/kg, i.t.) reduced histopathologic alterations in the lung including alveolar interstitial thickening, blood vessel hemorrhage, fibrin deposition, alveolar inflammation, and bronchiolization of alveolar walls within 3 d of exposure; damage to the alveolar-epithelial barrier, measured by bronchoalveolar lavage fluid protein and cells, was also reduced by NAC, along with oxidative stress as measured by heme oxygenase (HO)-1 and Ym-1 expression in the lung. Treatment of rats with NAC attenuated the accumulation of macrophages in the lung expressing proinflammatory genes including Ptgs2, Nos2, Il-6 and Il-12; macrophages expressing inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)α protein were also reduced in histologic sections. Conversely, NAC had no effect on macrophages expressing the anti-inflammatory proteins arginase-1 or mannose receptor, or on NM-induced increases in matrix metalloproteinase (MMP)-9 or proliferating cell nuclear antigen (PCNA), markers of tissue repair. Following NM exposure, lung macrophage basal and maximal glycolytic activity increased, while basal respiration decreased indicating greater reliance on glycolysis to generate ATP. NAC increased both glycolysis and oxidative phosphorylation. Additionally, in macrophages from both control and NM treated animals, NAC treatment resulted in increased S-nitrosylation of ATP synthase, protecting the enzyme from oxidative damage. Taken together, these data suggest that alterations in NM-induced macrophage activation and bioenergetics contribute to the efficacy of NAC in mitigating lung injury.


Assuntos
Acetilcisteína , Metabolismo Energético , Lesão Pulmonar , Mecloretamina , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Mecloretamina/toxicidade , Masculino , Metabolismo Energético/efeitos dos fármacos , Ratos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Ratos Sprague-Dawley , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Substâncias para a Guerra Química/toxicidade
2.
J Pharmacol Exp Ther ; 388(2): 586-595, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37188530

RESUMO

Nitrogen mustard (NM) is a cytotoxic vesicant known to cause pulmonary injury that can progress to fibrosis. NM toxicity is associated with an influx of inflammatory macrophages in the lung. Farnesoid X receptor (FXR) is a nuclear receptor involved in bile acid and lipid homeostasis that has anti-inflammatory activity. In these studies, we analyzed the effects of FXR activation on lung injury, oxidative stress, and fibrosis induced by NM. Male Wistar rats were exposed to phosphate-buffered saline (vehicle control) or NM (0.125 mg/kg) by intratracheal Penncentury-MicroSprayer aerosolization; this was followed by treatment with the FXR synthetic agonist, obeticholic acid (OCA, 15 mg/kg), or vehicle control (0.13-0.18 g peanut butter) 2 hours later and then once per day, 5 days per week thereafter for 28 days. NM caused histopathological changes in the lung, including epithelial thickening, alveolar circularization, and pulmonary edema. Picrosirius red staining and lung hydroxyproline content were increased, indicative of fibrosis; foamy lipid-laden macrophages were also identified in the lung. This was associated with aberrations in pulmonary function, including increases in resistance and hysteresis. Following NM exposure, lung expression of HO-1 and iNOS, and the ratio of nitrates/nitrites in bronchoalveolar lavage fluid (BAL), markers of oxidative stress increased, along with BAL levels of inflammatory proteins, fibrinogen, and sRAGE. Administration of OCA attenuated NM-induced histopathology, oxidative stress, inflammation, and altered lung function. These findings demonstrate that FXR plays a role in limiting NM-induced lung injury and chronic disease, suggesting that activating FXR may represent an effective approach to limiting NM-induced toxicity. SIGNIFICANCE STATEMENT: In this study, the role of farnesoid-X-receptor (FXR) in mustard vesicant-induced pulmonary toxicity was analyzed using nitrogen mustard (NM) as a model. This study's findings that administration of obeticholic acid, an FXR agonist, to rats reduces NM-induced pulmonary injury, oxidative stress, and fibrosis provide novel mechanistic insights into vesicant toxicity, which may be useful in the development of efficacious therapeutics.


Assuntos
Ácido Quenodesoxicólico/análogos & derivados , Lesão Pulmonar , Mecloretamina , Ratos , Masculino , Animais , Mecloretamina/toxicidade , Irritantes/efeitos adversos , Ratos Wistar , Pulmão , Fibrose , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/patologia , Lesão Pulmonar/metabolismo , Estresse Oxidativo , Lipídeos
3.
Toxicol Sci ; 194(1): 109-119, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37202362

RESUMO

Exposure to ozone causes decrements in pulmonary function, a response associated with alterations in lung lipids. Pulmonary lipid homeostasis is dependent on the activity of peroxisome proliferator activated receptor gamma (PPARγ), a nuclear receptor that regulates lipid uptake and catabolism by alveolar macrophages (AMs). Herein, we assessed the role of PPARγ in ozone-induced dyslipidemia and aberrant lung function in mice. Exposure of mice to ozone (0.8 ppm, 3 h) resulted in a significant reduction in lung hysteresivity at 72 h post exposure; this correlated with increases in levels of total phospholipids, specifically cholesteryl esters, ceramides, phosphatidylcholines, phosphorylethanolamines, sphingomyelins, and di- and triacylglycerols in lung lining fluid. This was accompanied by a reduction in relative surfactant protein-B (SP-B) content, consistent with surfactant dysfunction. Administration of the PPARγ agonist, rosiglitazone (5 mg/kg/day, i.p.) reduced total lung lipids, increased relative amounts of SP-B, and normalized pulmonary function in ozone-exposed mice. This was associated with increases in lung macrophage expression of CD36, a scavenger receptor important in lipid uptake and a transcriptional target of PPARγ. These findings highlight the role of alveolar lipids as regulators of surfactant activity and pulmonary function following ozone exposure and suggest that targeting lipid uptake by lung macrophages may be an efficacious approach for treating altered respiratory mechanics.


Assuntos
Dislipidemias , Ozônio , Camundongos , Animais , PPAR gama/metabolismo , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Ozônio/toxicidade , Fosfolipídeos/metabolismo , Tensoativos , Dislipidemias/induzido quimicamente , Dislipidemias/metabolismo
4.
Part Fibre Toxicol ; 20(1): 16, 2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-37088832

RESUMO

BACKGROUND: Exposure to micro- and nanoplastic particles (MNPs) in humans is being identified in both the indoor and outdoor environment. Detection of these materials in the air has made inhalation exposure to MNPs a major cause for concern. One type of plastic polymer found in indoor and outdoor settings is polyamide, often referred to as nylon. Inhalation of combustion-derived, metallic, and carbonaceous aerosols generate pulmonary inflammation, cardiovascular dysfunction, and systemic inflammation. Additionally, due to the additives present in plastics, MNPs may act as endocrine disruptors. Currently there is limited knowledge on potential health effects caused by polyamide or general MNP inhalation. OBJECTIVE: The purpose of this study is to assess the toxicological consequences of a single inhalation exposure of female rats to polyamide MNP during estrus by means of aerosolization of MNP. METHODS: Bulk polyamide powder (i.e., nylon) served as a representative MNP. Polyamide aerosolization was characterized using particle sizers, cascade impactors, and aerosol samplers. Multiple-Path Particle Dosimetry (MPPD) modeling was used to evaluate pulmonary deposition of MNPs. Pulmonary inflammation was assessed by bronchoalveolar lavage (BAL) cell content and H&E-stained tissue sections. Mean arterial pressure (MAP), wire myography of the aorta and uterine artery, and pressure myography of the radial artery was used to assess cardiovascular function. Systemic inflammation and endocrine disruption were quantified by measurement of proinflammatory cytokines and reproductive hormones. RESULTS: Our aerosolization exposure platform was found to generate particles within the micro- and nano-size ranges (thereby constituting MNPs). Inhaled particles were predicted to deposit in all regions of the lung; no overt pulmonary inflammation was observed. Conversely, increased blood pressure and impaired dilation in the uterine vasculature was noted while aortic vascular reactivity was unaffected. Inhalation of MNPs resulted in systemic inflammation as measured by increased plasma levels of IL-6. Decreased levels of 17ß-estradiol were also observed suggesting that MNPs have endocrine disrupting activity. CONCLUSIONS: These data demonstrate aerosolization of MNPs in our inhalation exposure platform. Inhaled MNP aerosols were found to alter inflammatory, cardiovascular, and endocrine activity. These novel findings will contribute to a better understanding of inhaled plastic particle toxicity.


Assuntos
Nylons , Pneumonia , Humanos , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Nylons/toxicidade , Microplásticos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Dilatação , Aerossóis e Gotículas Respiratórios , Pneumonia/induzido quimicamente , Pulmão , Inflamação/induzido quimicamente , Tamanho da Partícula , Líquido da Lavagem Broncoalveolar
5.
Toxicol Appl Pharmacol ; 461: 116388, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36690086

RESUMO

Chlorine (Cl2) gas is a highly toxic and oxidizing irritant that causes life-threatening lung injuries. Herein, we investigated the impact of Cl2-induced injury and oxidative stress on lung macrophage phenotype and function. Spontaneously breathing male C57BL/6J mice were exposed to air or Cl2 (300 ppm, 25 min) in a whole-body exposure chamber. Bronchoalveolar lavage (BAL) fluid and cells, and lung tissue were collected 24 h later and analyzed for markers of injury, oxidative stress and macrophage activation. Exposure of mice to Cl2 resulted in increases in numbers of BAL cells and levels of IgM, total protein, and fibrinogen, indicating alveolar epithelial barrier dysfunction and inflammation. BAL levels of inflammatory proteins including surfactant protein (SP)-D, soluble receptor for glycation end product (sRAGE) and matrix metalloproteinase (MMP)-9 were also increased. Cl2 inhalation resulted in upregulation of phospho-histone H2A.X, a marker of double-strand DNA breaks in the bronchiolar epithelium and alveolar cells; oxidative stress proteins, heme oxygenase (HO)-1 and catalase were also upregulated. Flow cytometric analysis of BAL cells revealed increases in proinflammatory macrophages following Cl2 exposure, whereas numbers of resident and antiinflammatory macrophages were not altered. This was associated with increases in numbers of macrophages expressing cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS), markers of proinflammatory activation, with no effect on mannose receptor (MR) or Ym-1 expression, markers of antiinflammatory activation. Metabolic analysis of lung cells showed increases in glycolytic activity following Cl2 exposure in line with proinflammatory macrophage activation. Mechanistic understanding of Cl2-induced injury will be useful in the identification of efficacious countermeasures for mitigating morbidity and mortality of this highly toxic gas.


Assuntos
Cloro , Lesão Pulmonar , Camundongos , Masculino , Animais , Cloro/toxicidade , Camundongos Endogâmicos C57BL , Pulmão , Macrófagos , Líquido da Lavagem Broncoalveolar , Estresse Oxidativo , Metabolismo Energético
6.
Toxicol Appl Pharmacol ; 456: 116257, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174670

RESUMO

Nitrogen mustard (NM) is a cytotoxic vesicant known to cause acute lung injury which progresses to fibrosis. Alveolar Type II cells are primarily responsible for surfactant production; they also play a key role in lung repair following injury. Herein, we assessed the effects of NM on Type II cell activity. Male Wistar rats were administered NM (0.125 mg/kg) or PBS control intratracheally. Type II cells, lung tissue and BAL were collected 3 d later. NM exposure resulted in double strand DNA breaks in Type II cells, as assessed by expression of γH2AX; this was associated with decreased expression of the DNA repair protein, PARP1. Expression of HO-1 was upregulated and nitrotyrosine residues were noted in Type II cells after NM exposure indicating oxidative stress. NM also caused alterations in Type II cell energy metabolism; thus, both glycolysis and oxidative phosphorylation were reduced; there was also a shift from a reliance on oxidative phosphorylation to glycolysis for ATP production. This was associated with increased expression of pro-apoptotic proteins activated caspase-3 and -9, and decreases in survival proteins, ß-catenin, Nur77, HMGB1 and SOCS2. Intracellular signaling molecules important in Type II cell activity including PI3K, Akt2, phospho-p38 MAPK and phospho-ERK were reduced after NM exposure. This was correlated with dysregulation of surfactant protein production and impaired pulmonary functioning. These data demonstrate that Type II cells are targets of NM-induced DNA damage and oxidative stress. Impaired functioning of these cells may contribute to pulmonary toxicity caused by mustards.


Assuntos
Lesão Pulmonar Aguda , Mecloretamina , Ratos , Masculino , Animais , Mecloretamina/toxicidade , Ratos Wistar , Lesão Pulmonar Aguda/induzido quimicamente , Células Epiteliais Alveolares , Estresse Oxidativo , Metabolismo Energético , Tensoativos/efeitos adversos
7.
Toxicol Sci ; 187(1): 162-174, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35201360

RESUMO

Ozone is a ubiquitous air pollutant that causes lung damage and altered functioning. Evidence suggests that proinflammatory macrophages contribute to ozone toxicity. Herein, we analyzed the role of extracellular vesicles (EVs) and microRNA (miRNA) cargo in ozone-induced macrophage activation. Exposure of mice to ozone (0.8 ppm, 3 h) resulted in increases in bronchoalveolar lavage fluid EVs, which were comprised predominantly of microvesicles (MVs). NanoFACS analysis revealed that MVs generated following both air and ozone exposure was largely from CD45+ myeloid cells; these MVs were readily taken up by macrophages. Functionally, MVs from ozone, but not air treated mice, upregulated mRNA expression of inflammatory proteins in macrophages including inducible nitric oxide synthase (iNOS), CXCL-1, CXCL-2, and interleukin (IL)-1ß. The miRNA profile of MVs in bronchoalveolar lavage fluid (BALF) was altered after ozone exposure; thus, increases in miR-21, miR-145, miR320a, miR-155, let-7b, miR744, miR181, miR-17, miR-92a, and miR-199a-3p were observed, whereas miR-24-3p and miR-20 were reduced. Ingenuity pathway analysis revealed that these miRNAs regulate pathways that promote inflammatory macrophage activation, and predicted that let-7a-5p/let-7b, miR-24-3p, miR-21-5p, miR-17, and miR-181a-5p are key upstream regulators of inflammatory proteins. After ozone exposure, miR-199a-3p, but not precursor miR-199a-3p, was increased in lung macrophages, indicating that it is derived from MV-mediated delivery. Furthermore, lung macrophage mRNA expression of IL-1ß was upregulated after administration of MVs containing miR-199a-3p mimic but downregulated by miR-199a-3p inhibitor. Collectively, these data suggest that MVs generated following ozone exposure contribute to proinflammatory macrophage activation via MV-derived miRNAs including miR-199a-3p. These findings identify a novel pathway regulating macrophage inflammatory responses to inhaled ozone.


Assuntos
MicroRNAs , Ozônio , Animais , Pulmão/metabolismo , Ativação de Macrófagos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Ozônio/toxicidade , RNA Mensageiro/metabolismo
8.
Toxicol Appl Pharmacol ; 387: 114798, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31678244

RESUMO

Nitrogen mustard (NM) is a cytotoxic vesicant known to cause acute lung injury which progresses to fibrosis. Herein, we developed a murine model of NM-induced pulmonary toxicity with the goal of assessing inflammatory mechanisms of injury. C57BL/6J mice were euthanized 1-28 d following intratracheal exposure to NM (0.08 mg/kg) or PBS control. NM caused progressive alveolar epithelial thickening, perivascular inflammation, bronchiolar epithelial hyperplasia, interstitial fibroplasia and fibrosis, peaking 14 d post exposure. Enlarged foamy macrophages were also observed in the lung 14 d post NM, along with increased numbers of microparticles in bronchoalveolar lavage fluid (BAL). Following NM exposure, rapid and prolonged increases in BAL cells, protein, total phospholipids and surfactant protein (SP)-D were also detected. Flow cytometric analysis showed that CD11b+Ly6G-F4/80+Ly6Chi proinflammatory macrophages accumulated in the lung after NM, peaking at 3 d. This was associated with macrophage expression of HMGB1 and TNFα in histologic sections. CD11b+Ly6G-F4/80+Ly6Clo anti-inflammatory/pro-fibrotic macrophages also increased in the lung after NM peaking at 14 d, a time coordinate with increases in TGFß expression and fibrosis. NM exposure also resulted in alterations in pulmonary mechanics including increases in tissue elastance and decreases in compliance and static compliance, most prominently at 14 d. These findings demonstrate that NM induces structural and inflammatory changes in the lung that correlate with aberrations in pulmonary function. This mouse model will be useful for mechanistic studies of mustard lung injury and for assessing potential countermeasures.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Substâncias para a Guerra Química/toxicidade , Pulmão/patologia , Mecloretamina/toxicidade , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Fibrose , Humanos , Pulmão/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos
9.
Artigo em Inglês | MEDLINE | ID: mdl-30845693

RESUMO

Sarcoid-like granulomatous diseases (SGD) have been previously identified in cohorts of World Trade Center (WTC) dust-exposed individuals. In the present studies, we analyzed lung and/or lymph node biopsies from patients referred to our clinic with suspected WTC dust-induced lung disease to evaluate potential pathophysiologic mechanisms. Histologic sections of lung and/or lymph node samples were analyzed for markers of injury, oxidative stress, inflammation, fibrosis, and epigenetic modifications. Out of seven patients examined, we diagnosed four with SGD and two with pulmonary fibrosis; one was diagnosed later with SGD at another medical facility. Patients with SGD were predominantly white, obese men, who were less than 50 years old and never smoked. Cytochrome b5, cytokeratin 17, heme oxygenase-1, lipocalin-2, inducible nitric oxide synthase, cyclooxygenase 2, tumor necrosis factor α, ADP-ribosylation factor-like GTPase 11, mannose receptor-1, galectin-3, transforming growth factor ß, histone-3 and methylated histone-3 were identified in lung and lymph nodes at varying levels in all samples examined. Three of the biopsy samples with granulomas displayed peri-granulomatous fibrosis. These findings are important and suggest the potential of WTC dust-induced fibrotic sarcoid. It is likely that patient demographics and/or genetic factors influence the response to WTC dust injury and that these contribute to different pathological outcomes.


Assuntos
Exposição Ocupacional , Sarcoidose/etiologia , Ataques Terroristas de 11 de Setembro , Adulto , Poeira , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
Toxicol Sci ; 166(1): 108-122, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30060251

RESUMO

Nitrogen mustard (NM) is a vesicant known to cause acute pulmonary injury which progresses to fibrosis. Macrophages contribute to both of these pathologies. Surfactant protein (SP)-D is a pulmonary collectin that suppresses lung macrophage activity. Herein, we analyzed the effects of loss of SP-D on NM-induced macrophage activation and lung toxicity. Wild-type (WT) and SP-D-/- mice were treated intratracheally with PBS or NM (0.08 mg/kg). Bronchoalveolar lavage (BAL) fluid and tissue were collected 14 days later. In WT mice, NM caused an increase in total SP-D levels in BAL; multiple lower molecular weight forms of SP-D were also identified, consistent with lung injury and oxidative stress. Flow cytometric analysis of BAL cells from NM treated WT mice revealed the presence of proinflammatory and anti-inflammatory macrophages. Whereas loss of SP-D had no effect on numbers of these cells, their activation state, as measured by proinflammatory (iNOS, MMP-9), and anti-inflammatory (MR-1, Ym-1) protein expression, was amplified. Loss of SP-D also exacerbated NM-induced oxidative stress and alveolar epithelial injury, as reflected by increases in heme oxygenase-1 expression, and BAL cell and protein content. This was correlated with alterations in pulmonary mechanics. In NM-treated SP-D-/-, but not WT mice, there was evidence of edema, epithelial hypertrophy and hyperplasia, bronchiectasis, and fibrosis, as well as increases in BAL phospholipid content. These data demonstrate that activated lung macrophages play a role in NM-induced lung injury and oxidative stress. Elucidating mechanisms regulating macrophage activity may be important in developing therapeutics to treat mustard-induced lung injury.


Assuntos
Lesão Pulmonar/induzido quimicamente , Macrófagos Alveolares/efeitos dos fármacos , Mecloretamina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Proteína D Associada a Surfactante Pulmonar/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/citologia , Feminino , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Exp Mol Pathol ; 102(1): 50-58, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27986442

RESUMO

Exposure to World Trade Center (WTC) dust has been linked to respiratory disease in humans. In the present studies we developed a rodent model of WTC dust exposure to analyze lung oxidative stress and inflammation, with the goal of elucidating potential epigenetic mechanisms underlying these responses. Exposure of mice to WTC dust (20µg, i.t.) was associated with upregulation of heme oxygenase-1 and cyclooxygenase-2 within 3days, a response which persisted for at least 21days. Whereas matrix metalloproteinase was upregulated 7days post-WTC dust exposure, IL-6RA1 was increased at 21days; conversely, expression of mannose receptor, a scavenger receptor important in particle clearance, decreased. After WTC dust exposure, increases in methylation of histone H3 lysine K4 at 3days, lysine K27 at 7days and lysine K36, were observed in the lung, along with hypermethylation of Line-1 element at 21days. Alterations in pulmonary mechanics were also observed following WTC dust exposure. Thus, 3days post-exposure, lung resistance and tissue damping were decreased. In contrast at 21days, lung resistance, central airway resistance, tissue damping and tissue elastance were increased. These data demonstrate that WTC dust-induced inflammation and oxidative stress are associated with epigenetic modifications in the lung and altered pulmonary mechanics. These changes may contribute to the development of WTC dust pathologies.


Assuntos
Poluentes Atmosféricos/toxicidade , Poeira , Epigênese Genética , Inflamação/diagnóstico , Estresse Oxidativo , Animais , Western Blotting , Ciclo-Oxigenase 2/metabolismo , Citocinas/genética , Metilação de DNA/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Histonas/metabolismo , Humanos , Imuno-Histoquímica , Inflamação/etiologia , Inflamação/genética , Exposição por Inalação , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/fisiopatologia , Lisina/metabolismo , Metaloproteinases da Matriz/metabolismo , Metilação/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ataques Terroristas de 11 de Setembro , Regulação para Cima/efeitos dos fármacos
12.
Ann N Y Acad Sci ; 1374(1): 168-75, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27351588

RESUMO

Sulfur mustard (SM) and nitrogen mustard (NM) are cytotoxic alkylating agents that cause severe and progressive injury to the respiratory tract, resulting in significant morbidity and mortality. Evidence suggests that macrophages and the inflammatory mediators they release play roles in both acute and long-term pulmonary injuries caused by mustards. In this article, we review the pathogenic effects of SM and NM on the respiratory tract and potential inflammatory mechanisms contributing to this activity.


Assuntos
Mediadores da Inflamação/metabolismo , Irritantes/toxicidade , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Macrófagos/patologia , Gás de Mostarda/toxicidade , Animais , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
13.
Toxicol Lett ; 244: 2-7, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26478570

RESUMO

Exposure of humans and animals to vesicants, including sulfur mustard (SM) and nitrogen mustard (NM), causes severe and debilitating damage to the respiratory tract. Both acute and long term pathological consequences are observed in the lung following a single exposure to these vesicants. Evidence from our laboratories and others suggest that macrophages and the inflammatory mediators they release play an important role in mustard-induced lung injury. In this paper, the pathogenic effects of SM and NM on the lung are reviewed, along with the potential role of inflammatory macrophages and mediators they release in mustard-induced pulmonary toxicity.


Assuntos
Lesão Pulmonar/induzido quimicamente , Pulmão/efeitos dos fármacos , Compostos de Mostarda Nitrogenada/toxicidade , Pneumonia/induzido quimicamente , Animais , Antídotos/uso terapêutico , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Exposição por Inalação , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/fisiopatologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Pneumonia/patologia , Pneumonia/fisiopatologia , Transdução de Sinais/efeitos dos fármacos
14.
Toxicol Sci ; 148(1): 71-88, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26243812

RESUMO

Nitrogen mustard (NM) is a bifunctional alkylating agent that causes acute injury to the lung that progresses to fibrosis. This is accompanied by a prominent infiltration of macrophages into the lung and upregulation of proinflammatory/profibrotic cytokines including tumor necrosis factor (TNF)α. In these studies, we analyzed the ability of anti-TNFα antibody to mitigate NM-induced lung injury, inflammation, and fibrosis. Treatment of rats with anti-TNFα antibody (15 mg/kg, iv, every 9 days) beginning 30 min after intratracheal administration of NM (0.125 mg/kg) reduced progressive histopathologic alterations in the lung including perivascular and peribronchial edema, macrophage/monocyte infiltration, interstitial thickening, bronchiolization of alveolar walls, fibrin deposition, emphysema, and fibrosis. NM-induced damage to the alveolar-epithelial barrier, measured by bronchoalveolar lavage (BAL) protein and cell content, was also reduced by anti-TNFα antibody, along with expression of the oxidative stress marker, heme oxygenase-1. Whereas the accumulation of proinflammatory/cytotoxic M1 macrophages in the lung in response to NM was suppressed by anti-TNFα antibody, anti-inflammatory/profibrotic M2 macrophages were increased or unchanged. Treatment of rats with anti-TNFα antibody also reduced NM-induced increases in expression of the profibrotic mediator, transforming growth factor-ß. This was associated with a reduction in NM-induced collagen deposition in the lung. These data suggest that inhibiting TNFα may represent an efficacious approach to mitigating lung injury induced by mustards.


Assuntos
Alquilantes/toxicidade , Anticorpos Monoclonais/uso terapêutico , Pulmão/efeitos dos fármacos , Mecloretamina/toxicidade , Enfisema Pulmonar/tratamento farmacológico , Fibrose Pulmonar/prevenção & controle , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Alquilantes/química , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Biomarcadores/metabolismo , Substâncias para a Guerra Química/química , Substâncias para a Guerra Química/toxicidade , Progressão da Doença , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Imunoglobulina G/uso terapêutico , Pulmão/imunologia , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Mecloretamina/antagonistas & inibidores , Camundongos , Terapia de Alvo Molecular , Estresse Oxidativo/efeitos dos fármacos , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/patologia , Enfisema Pulmonar/fisiopatologia , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/imunologia , Ratos Wistar , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Fator de Necrose Tumoral alfa/metabolismo
15.
Toxicol Appl Pharmacol ; 284(2): 236-45, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25724551

RESUMO

Macrophages play a dual role in ozone toxicity, contributing to both pro- and anti-inflammatory processes. Galectin-3 (Gal-3) is a lectin known to regulate macrophage activity. Herein, we analyzed the role of Gal-3 in the response of lung macrophages to ozone. Bronchoalveolar lavage (BAL) and lung tissue were collected 24-72h after exposure (3h) of WT and Gal-3(-/-) mice to air or 0.8ppm ozone. In WT mice, ozone inhalation resulted in increased numbers of proinflammatory (Gal-3(+), iNOS(+)) and anti-inflammatory (MR-1(+)) macrophages in the lungs. While accumulation of iNOS(+) macrophages was attenuated in Gal-3(-/-) mice, increased numbers of enlarged MR-1(+) macrophages were noted. This correlated with increased numbers of macrophages in BAL. Flow cytometric analysis showed that these cells were CD11b(+) and consisted mainly (>97%) of mature (F4/80(+)CD11c(+)) proinflammatory (Ly6GLy6C(hi)) and anti-inflammatory (Ly6GLy6C(lo)) macrophages. Increases in both macrophage subpopulations were observed following ozone inhalation. Loss of Gal-3 resulted in a decrease in Ly6C(hi) macrophages, with no effect on Ly6C(lo) macrophages. CD11b(+)Ly6G(+)Ly6C(+) granulocytic (G) and monocytic (M) myeloid derived suppressor cells (MDSC) were also identified in the lung after ozone. In Gal-3(-/-) mice, the response of G-MDSC to ozone was attenuated, while the response of M-MDSC was heightened. Changes in inflammatory cell populations in the lung of ozone treated Gal-3(-/-) mice were correlated with reduced tissue injury as measured by cytochrome b5 expression. These data demonstrate that Gal-3 plays a role in promoting proinflammatory macrophage accumulation and toxicity in the lung following ozone exposure.


Assuntos
Galectina 3/metabolismo , Galectinas/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Ozônio/toxicidade , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Animais , Feminino , Galactosídeos/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo
16.
Exp Mol Pathol ; 97(1): 89-98, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24886962

RESUMO

Nitrogen mustard (NM) is a toxic alkylating agent that causes damage to the respiratory tract. Evidence suggests that macrophages and inflammatory mediators including tumor necrosis factor (TNF)α contribute to pulmonary injury. Pentoxifylline is a TNFα inhibitor known to suppress inflammation. In these studies, we analyzed the ability of pentoxifylline to mitigate NM-induced lung injury and inflammation. Exposure of male Wistar rats (150-174 g; 8-10 weeks) to NM (0.125 mg/kg, i.t.) resulted in severe histopathological changes in the lung within 3d of exposure, along with increases in bronchoalveolar lavage (BAL) cell number and protein, indicating inflammation and alveolar-epithelial barrier dysfunction. This was associated with increases in oxidative stress proteins including lipocalin (Lcn)2 and heme oxygenase (HO)-1 in the lung, along with pro-inflammatory/cytotoxic (COX-2(+) and MMP-9(+)), and anti-inflammatory/wound repair (CD163+ and Gal-3(+)) macrophages. Treatment of rats with pentoxifylline (46.7 mg/kg, i.p.) daily for 3d beginning 15 min after NM significantly reduced NM-induced lung injury, inflammation, and oxidative stress, as measured histologically and by decreases in BAL cell and protein content, and levels of HO-1 and Lcn2. Macrophages expressing COX-2 and MMP-9 also decreased after pentoxifylline, while CD163+ and Gal-3(+) macrophages increased. This was correlated with persistent upregulation of markers of wound repair including pro-surfactant protein-C and proliferating nuclear cell antigen by Type II cells. NM-induced lung injury and inflammation were associated with alterations in the elastic properties of the lung, however these were largely unaltered by pentoxifylline. These data suggest that pentoxifylline may be useful in treating acute lung injury, inflammation and oxidative stress induced by vesicants.


Assuntos
Lesão Pulmonar Aguda/patologia , Mecloretamina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Pentoxifilina/farmacologia , Pneumonia/induzido quimicamente , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Substâncias para a Guerra Química/toxicidade , Ciclo-Oxigenase 2/metabolismo , Heme Oxigenase-1/metabolismo , Irritantes/toxicidade , Lipocalina-2 , Lipocalinas/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Pneumonia/tratamento farmacológico , Ratos , Ratos Wistar , Receptores CXCR3/metabolismo
17.
Toxicol Sci ; 133(2): 309-19, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23492811

RESUMO

In these studies, we analyzed the effects of ozone on bronchiolar epithelium. Exposure of rats to ozone (2 ppm, 3 h) resulted in rapid (within 3 h) and persistent (up to 72 h) histological changes in the bronchiolar epithelium, including hypercellularity, loss of cilia, and necrotizing bronchiolitis. Perivascular edema and vascular congestion were also evident, along with a decrease in Clara cell secretory protein in bronchoalveolar lavage, which was maximal 24 h post-exposure. Ozone also induced the appearance of 8-hydroxy-2'-deoxyguanosine, Ym1, and heme oxygenase-1 in the bronchiolar epithelium. This was associated with increased expression of cleaved caspase-9 and beclin-1, indicating initiation of apoptosis and autophagy. A rapid and persistent increase in galectin-3, a regulator of epithelial cell apoptosis, was also observed. Following ozone exposure (3-24 h), increased expression of cyclooxygenase-2, inducible nitric oxide synthase, and arginase-1 was noted in bronchiolar epithelium. Ozone-induced injury and oxidative stress in bronchiolar epithelium were linked to methacholine-induced alterations in pulmonary mechanics. Thus, significant increases in lung resistance and elastance, along with decreases in lung compliance and end tidal volume, were observed at higher doses of methacholine. This indicates that ozone causes an increase in effective stiffness of the lung as a consequence of changes in the conducting airways. Collectively, these studies demonstrate that bronchiolar epithelium is highly susceptible to injury and oxidative stress induced by acute exposure to ozone; moreover, this is accompanied by altered lung functioning.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Pulmão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ozônio/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/fisiopatologia , Animais , Bronquíolos/efeitos dos fármacos , Bronquíolos/metabolismo , Modelos Animais de Doenças , Feminino , Pulmão/metabolismo , Pulmão/fisiopatologia , Ratos , Ratos Wistar , Testes de Função Respiratória , Mucosa Respiratória/metabolismo
18.
J Control Release ; 164(1): 65-73, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23041417

RESUMO

A novel stabilized aggregated nanogel particle (SANP) drug delivery system was prepared for injectable passive lung targeting. Gel nanoparticles (GNPs) were synthesized by irreversibly cross-linking 8 Arm PEG thiol with 1,6-hexane-bis-vinylsulfone (HBVS) in phosphate buffer (PB, pH 7.4) containing 0.1% v/v Tween™ 80. Aggregated nanogel particles (ANPs) were generated by aggregating GNPs to micron-size, which were then stabilized (i.e., SANPs) using a PEG thiol polymer to prevent further growth-aggregation. The size of SANPs, ANPs and GNPs was analyzed using a Coulter counter and transmission electron microscopy (TEM). Stability studies of SANPs were performed at 37°C in rat plasma, phosphate buffered saline (PBS, pH 7.4) and PB (pH 7.4). SANPs were stable in rat plasma, PBS and PB over 7 days. SANPs were covalently labeled with HiLyte Fluor™ 750 (DYE-SANPs) to facilitate ex vivo imaging. Biodistribution of intravenous DYE-SANPs (30 µm, 4 mg in 500 µL PBS) in male Sprague-Dawley rats was compared to free HiLyte Fluor™ 750 DYE alone (1mg in 500 µL PBS) and determined using a Xenogen IVIS® 100 Imaging System. Biodistribution studies demonstrated that free DYE was rapidly eliminated from the body by renal filtration, whereas DYE-SANPs accumulated in the lung within 30 min and persisted for 48 h. DYE-SANPs were enzymatically degraded to their original principle components (i.e., DYE-PEG-thiol and PEG-VS polymer) and were then eliminated from the body by renal filtration. Histological evaluation using H & E staining and broncho alveolar lavage (BAL) confirmed that these flexible SANPs were not toxic. This suggests that because of their flexible and non-toxic nature, SANPs may be a useful alternative for treating pulmonary diseases such as asthma, pneumonia, tuberculosis and disseminated lung cancer.


Assuntos
Materiais Biocompatíveis/farmacocinética , Portadores de Fármacos/farmacocinética , Rim/metabolismo , Pulmão/efeitos dos fármacos , Polietilenoglicóis/farmacocinética , Polietilenoimina/farmacocinética , Animais , Materiais Biocompatíveis/química , Portadores de Fármacos/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Injeções Intravenosas , Pulmão/metabolismo , Masculino , Taxa de Depuração Metabólica , Microscopia Eletrônica de Transmissão , Nanogéis , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenoimina/química , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Distribuição Tecidual
19.
Toxicol Appl Pharmacol ; 263(2): 195-202, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22727909

RESUMO

Ozone is a pulmonary irritant known to cause oxidative stress, inflammation and tissue injury. Evidence suggests that macrophages play a role in the pathogenic response; however, their contribution depends on the mediators they encounter in the lung which dictate their function. In these studies we analyzed the effects of ozone-induced oxidative stress on the phenotype of alveolar macrophages (AM). Exposure of rats to ozone (2 ppm, 3h) resulted in increased expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG), as well as heme oxygenase-1 (HO-1) in AM. Whereas 8-OHdG was maximum at 24h, expression of HO-1 was biphasic increasing after 3h and 48-72 h. Cleaved caspase-9 and beclin-1, markers of apoptosis and autophagy, were also induced in AM 24h post-ozone. This was associated with increased bronchoalveolar lavage protein and cells, as well as matrix metalloproteinase (MMP)-2 and MMP-9, demonstrating alveolar epithelial injury. Ozone intoxication resulted in biphasic activation of the transcription factor, NFκB. This correlated with expression of monocyte chemotactic protein-1, inducible nitric oxide synthase and cyclooxygenase-2, markers of proinflammatory macrophages. Increases in arginase-1, Ym1 and galectin-3 positive anti-inflammatory/wound repair macrophages were also observed in the lung after ozone inhalation, beginning at 24h (arginase-1, Ym1), and persisting for 72 h (galectin-3). This was associated with increased expression of pro-surfactant protein-C, a marker of Type II cell proliferation and activation, important steps in wound repair. These data suggest that both proinflammatory/cytotoxic and anti-inflammatory/wound repair macrophages are activated early in the response to ozone-induced oxidative stress and tissue injury.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , 8-Hidroxi-2'-Desoxiguanosina , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/genética , Feminino , Heme Oxigenase-1/genética , Inflamação/induzido quimicamente , Inflamação/patologia , Pulmão/patologia , Macrófagos Alveolares/patologia , Ozônio/administração & dosagem , Ozônio/toxicidade , Proteína C/genética , Ratos , Ratos Wistar , Fatores de Tempo
20.
Toxicol Appl Pharmacol ; 261(1): 22-30, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22446026

RESUMO

Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS-/- mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS-/- mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS-/- mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS-/- mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS-/- mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning.


Assuntos
Inflamação/fisiopatologia , Lesão Pulmonar/fisiopatologia , Gás de Mostarda/análogos & derivados , Óxido Nítrico Sintase Tipo II/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Proteínas de Fase Aguda/genética , Animais , Substâncias para a Guerra Química/toxicidade , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/induzido quimicamente , Lipocalina-2 , Lipocalinas/genética , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Lesão Pulmonar/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gás de Mostarda/toxicidade , Óxido Nítrico Sintase Tipo II/genética , Proteínas Oncogênicas/genética , Estresse Oxidativo/efeitos dos fármacos , Fatores de Tempo , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA